KPC6N138 Series

8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCOUPLER

- **Description**

 The KPC6N138 series consist of an LED, optically coupled to a photodarlington and high-speed digital output. It is packaged in a 8 pin DIP package and available in wide-lead spacing and SMD option.

- **Schematic**

 ![Schematic Diagram]

 1. N.C.
 2. Anode
 3. Cathode
 4. N.C.
 5. GND
 6. Vo
 7. VB
 8. Vcc

- **Features**

 1. Pb free and RoHS compliant
 2. High current transfer ratio (CTR:Min.300% at $I_F=1.6mA$)
 3. High-speed response (tPLH,tPHL: typ.2us at $R_L=2.2K\Omega$)
 4. Instantaneous common mode rejection voltage(CMH:typ. 500V/us)
 5. TTL compatible output
 6. Compact surface mount type package
 7. MSL class 1
 8. Agency Approvals:
 - UL Approved (No. E169586): UL1577
 - c-UL Approved (No. E169586)
 - FIMKO Approved: EN60065, EN60950

- **Applications**

 - Interfaces for computer peripherals
 - Electronic calculators, measuring instruments, control equipment
 - Telephone sets
 - Signal transmission between circuits of different potentials and impedances
KPC6N138 Series
8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCOUPLER

● Outside Dimension

Unit: mm

1. Dual-in-line type

2. Surface mount type

3. Long creepage distance type

4. Long creepage distance for surface mount type

TOLERANCE: ±0.2mm

● Device Marking

Notes:

Cosmo

6N138

YWW

Y: Year code / WW: Week code
Absolute Maximum Ratings

Parameter	**Symbol**	**Rating**	**Unit**
Input | Forward current | I_F | 20 | mA
*1 Peak forward current | I_{PF} | 40 | mA
*2 Peak transient forward current | I_{TM} | 1 | A
Reverse voltage | V_R | 5 | V
Power dissipation | P_D | 35 | mW
Supply voltage | V_{CC} | -0.5 to 7 | V
Output voltage | V_O | -0.5 to 7 | V
*3 Average output current | I_O | 60 | mA
Power dissipation | P_O | 100 | mW
*4 Isolation voltage 1 minute | V_{ISO} | 5000 | Vrms
Operating temperature | T_{OPR} | -40 to +100 | °C
Storage temperature | T_{STG} | -55 to +125 | °C
*5 Soldering temperature 10 seconds | T_{SOL} | 260 | °C

*1 50% duty cycle, pulse width : 1mS
*2 Pulse width<=1uS,300 pulse/sec
*3 Decreases at the rate of 0.7mA/°C if the external temperature is 25°C or more
*4 40% to 60% RH, AC for 1 minute
*5 For 10 seconds

Electro-optical Characteristics

Parameter	**Symbol**	**Conditions**	**Min.**	**Typ.**	**Max.**	**Unit**
*6 Current transfer ratio | CTR | $I_F=1.6mA, V_O=0.4V, V_{CC}=4.5V$ | 300 | 1600 | - | %
Logic (0) output voltage | V_{OL} | $I_F=1.6mA, I_O=4.8mA, V_{CC}=4.5V$ | - | 0.1 | 0.4 | V
Logic (1) output current | I_{OH} | $I_F=0, V_O=V_{CC}=7V$ | - | 0.1 | 250 | μA
Logic (0) supply current | I_{CCL} | $I_F=1.6mA, V_O=open, V_{CC}=5V$ | - | 0.5 | - | mA
Logic (1) supply current | I_{CCH} | $I_F=0, V_O=open, V_{CC}=5V$ | - | 10 | - | nA
Input forward voltage | V_F | $T_a=25°C, I_R=1.6mA$ | - | 1.5 | 1.7 | V
Input forward voltage temperature coefficient | $\Delta V_F/\Delta T_a$ | $I_F=1.6mA$ | - | -1.9 | - | mV/°C
Input reverse voltage | B_{VR} | $T_a=25°C, I_R=10uA$ | 5.0 | - | - | V
Input capacitance | C_{IN} | $V_F=0, f=1MHz$ | - | 60 | - | pF
*7 Leak current(input-output) | I_{I-O} | $T_a=25°C, 45% RH, V_{I-O}=3kVDC, t=5s$ | - | - | 1.0 | uA
*7 Isolation resistance(input-output) | R_{I-O} | $V_{I-O}=500VDC$ | - | 1012 | - | Ω
*7 Capacitance(input-output) | C_{I-O} | $f=1MHz$ | - | 0.6 | - | pF

*6 Current transfer ratio is the ratio is the ratio of input current and output current expressed in %
*7 Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)
KPC6N138 Series
8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCOUPLER

Switching Characteristics

(Ta=25°C, Vcc=5V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>*8 Propagation delay time Output (1)->(0)</td>
<td>t_{PHL}</td>
<td>R_L=2.2kΩ, I_F=1.6mA</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>uS</td>
</tr>
<tr>
<td>*8 Propagation delay time Output (0)->(1)</td>
<td>t_{PLH}</td>
<td>R_L=2.2kΩ, I_F=1.6mA</td>
<td>-</td>
<td>7</td>
<td>35</td>
<td>uS</td>
</tr>
<tr>
<td>*9 Instantaneous common mode rejection voltage "Output (1)"</td>
<td>C_{MH}</td>
<td>I_F=0, V_{CM}=10Vp-p, R_L=2.2kΩ</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>V/μS</td>
</tr>
<tr>
<td>*9 Instantaneous common mode rejection voltage "Output (0)"</td>
<td>C_{ML}</td>
<td>I_F=1.6mA, V_{CM}=10Vp-p, R_L=2.2kΩ</td>
<td>-</td>
<td>-500</td>
<td>-</td>
<td>V/μS</td>
</tr>
</tbody>
</table>

*9 Instantaneous common mode rejection voltage "Output (1)" represents a common mode voltage variation that can hold the output above (1) level (Vo > 2.0V)

*10 Instantaneous common mode rejection voltage "Output (0)" represents a common mode voltage variation that can hold the output above (0) level (Vo < 0.8V)

*8 Test Circuit Propagation Delay Time

*10 Test Circuit for Instantaneous Common Mode Rejection Voltage
Fig. 1 Forward Current vs. Forward Voltage

Fig. 2 Forward Current vs. Ambient Temperature

Fig. 3 Response and Fall Time vs. Load Resistance

Fig. 4 Current Transfer Ratio vs. Forward Current

Fig. 5 Current Transfer Ratio vs. Base-Emitter Resistance

Fig. 6 Output Current vs. Output Voltage
KPC6N138 Series

8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCouPLER

Fig.7 Output Current vs. Forward Current

![Graph showing the relationship between Output Current and Forward Current with curves for different temperatures and supply voltages.]

Fig.8 Logic Low Supply Current vs. Forward Current

![Graph showing the relationship between Logic Low Supply Current and Forward Current with curves for different supply voltages.]

Fig.9 Propagation Delay vs. Forward Current

![Graph showing the relationship between Propagation Delay and Forward Current for different load resistors at 25°C.]

Fig.10 Propagation Delay to Logic Low vs. Pulse Period

![Graph showing the relationship between Propagation Delay to Logic Low and Input Pulse Period for a fixed forward current and load resistor at 25°C.]

Cosmo Electronics Corp.

Document No. 69P51004.3

http://www.cosmo-ic.com
Recommended Soldering Conditions

(a) **Infrared reflow soldering**:
- Peak reflow soldering: 260℃ or below (package surface temperature)
- Time of peak reflow temperature: 10 sec
- Time of temperature higher than 230℃: 30-60 sec
- Time to preheat temperature from 180~190℃: 60-120 sec
- Time(s) of reflow: Two
- Flux: Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

![Recommended Temperature Profile of Infrared Reflow](image)

(b) **Wave soldering**:
- Temperature: 260℃ or below (molten solder temperature)
- Time: 10 seconds or less
- Preheating conditions: 120℃ or below (package surface temperature)
- Time(s) of reflow: One
- Flux: Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

(c) **Cautions**:
- Fluxes: Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.
- Avoid shorting between portion of frame and leads.
KPC6N138 Series
8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCOUPLER

- Numbering System

KPC6N138 X (Y)

Notes:
KPC6N138 = Part No.
X = Lead form option (blank, S, H, L)
Y = Tape and reel option (TL, TR, TLD, TRU)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Packing quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (TL)</td>
<td>surface mount type package + TL tape & reel option</td>
<td>1000 units per reel</td>
</tr>
<tr>
<td>S (TR)</td>
<td>surface mount type package + TR tape & reel option</td>
<td>1000 units per reel</td>
</tr>
<tr>
<td>L (TLD)</td>
<td>long creepage distance for surface mount type package + TLD tape & reel option</td>
<td>800 units per reel</td>
</tr>
<tr>
<td>L (TRU)</td>
<td>long creepage distance for surface mount type package + TRU tape & reel option</td>
<td>800 units per reel</td>
</tr>
</tbody>
</table>

- Recommended Pad Layout for Surface Mount Lead Form

1. Surface mount type

2. Long creepage distance for surface mount type

Unit: mm
8-pin SMD Carrier Tape & Reel

Direction of feed from reel

Quantity: 1000pcs/reel
KPC6N138 Series
8PIN HIGH-SPEED DARLINGTON OUTPUT PHOTOCOUPLER

- 8-pin L Carrier Tape & Reel

TLD

TRU

Direction of feed from reel

Direction of feed from reel

TOLERANCE : ±0.2mm

Quantity : 800pcs/reel
Application Notice

The statements regarding the suitability of products for certain types of applications are based on cosmo's knowledge of general applications of cosmo products. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to verify the specifications are suitable for use in a particular application. Customers are solely responsible for all aspects of their own product design or applications. The parameters provided in the datasheet may vary in different applications and performance may vary over time. All operating parameters (including typical parameters) must be validated by customer's technical experts for different applications. cosmo assumes no liability for customer's product design or applications. Product specifications do not expand or otherwise change cosmo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

When using cosmo products, please comply with safety standards and instructions. cosmo has no liability and responsibility to the damage caused by improper use of the instructions specified in the specifications.

cosmo products are designed for use in general electronic equipment such as telecommunications, office automation equipments, personal computers, test and measurement equipments, consumer electronics, industrial control, instrumentation, audio, video.

cosmo devices shall not be used in equipment that requires higher level of reliability and safety, such as nuclear power control equipment, telecommunication equipment(trunk lines), space application, medical and other life supporting equipments, and equipment for aircraft, military, automotive or any other application that can cause human injury or death.

cosmo reserves the right to change the specifications, data, characteristics, structure, materials and other contents at any time without notice. Please contact cosmo to obtain the latest specification.

cosmo disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.