


4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

#### Description

The KPS2805 series consist of two infrared emitting diodes, connected in inverse parallel, optically coupled to a phototransistor detector. They are packaged in a 4-pin SSOP package. The input-output isolation voltage is rated at 3750Vrms..

#### Schematic

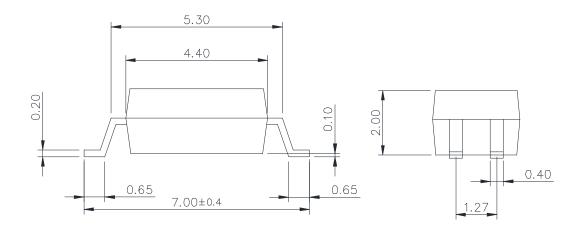


- 1. Anode/ Cathode
- 2. Anode/ Cathode
- 3. Emitter
- 4. Collector

#### Features

- 1. Pb free and RoHS compliant
- 2. High isolation voltage (V<sub>ISO</sub>=3750Vrms)
- 3. Small and thin package (4pin SSOP, pin pitch 1.27mm)
- 4. High collector to emitter voltage (V<sub>CEO</sub>=80V).
- 5. AC input response
- 6. High-speed switching tr =3µs (typ.), tf=5µs (typ.)
- 7. MSL class 1
- 8. Agency Approvals:
  - UL Approved (No. E169586): UL1577
  - c-UL Approved (No. E169586)
  - VDE Approved (No. 40010469): DIN EN60747-5-5
  - FIMKO Approved: EN62368-1, EN60601-1
  - CQC Approved: GB8898-2011, GB4943.1-2011

#### Applications


- Programmable logic controllers
- · Measuring instruments
- Hybrid IC

# 4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

#### Outside Dimension







TOLERANCE: ±0.2mm

## Device Marking



#### Notes:

2805

YWW Y: Year code / WW: Week code



4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

## Absolute Maximum Ratings

(Ta=25°C)

| Parameter             |                                      | Symbol             | Rating      | Unit                   |
|-----------------------|--------------------------------------|--------------------|-------------|------------------------|
| Input                 | Forward current                      | I <sub>F</sub>     | ±50         | mA                     |
|                       | Peak forward current(*1)             | I <sub>FP</sub>    | ±1          | Α                      |
|                       | Power dissipation                    | P <sub>D</sub>     | 60          | mW                     |
|                       | Power dissipation derating           | P <sub>D</sub> /°C | 0.6         | mW/°C                  |
| Output                | Collector-Emitter voltage            | V <sub>CEO</sub>   | 80          | V                      |
|                       | Emitter-Collector voltage            | V <sub>ECO</sub>   | 6           | V                      |
|                       | Collector current                    | Ic                 | 50          | mA                     |
|                       | Collector power dissipation          | Pc                 | 160         | mW                     |
|                       | Collector power dissipation derating | P <sub>c</sub> /°C | 1.2         | mW/°C                  |
|                       | Isolation voltage 1 minute(*2)       | Viso               | 3750        | Vrms                   |
| Operating temperature |                                      | Topr               | -55 to +115 | $^{\circ}\!\mathbb{C}$ |
|                       | Storage temperature                  | Tstg               | -55 to +125 | $^{\circ}\!\mathbb{C}$ |

<sup>\*1</sup> PW=100µs,Duty Cycle=1%.

### Electro-optical Characteristics

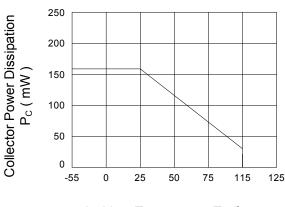
(Ta=25°ℂ)

| Parameter                        |                                      | Symbol           | Conditions                                 | Min.               | Тур.             | Max. | Unit |
|----------------------------------|--------------------------------------|------------------|--------------------------------------------|--------------------|------------------|------|------|
| Input                            | Forward voltage                      | V <sub>F</sub>   | I <sub>F</sub> =±5mA                       | -                  | 1.1              | 1.4  | V    |
|                                  | Terminal capacitance                 | Ct               | V=0, f=1MHz                                | -                  | 60               | -    | pF   |
| Output                           | Collector dark current               | I <sub>CEO</sub> | VCE=80V, I <sub>F</sub> =0mA               | -                  | -                | 100  | nA   |
| Transfer<br>charac-<br>teristics | Current transfer ratio               | CTR              | I <sub>F</sub> =±5mA, V <sub>CE</sub> =5V  | 50                 | -                | 600  | %    |
|                                  | CTR ratio*1                          | CTR1/CTR2        | I <sub>F</sub> =5mA, V <sub>CE</sub> =5V   | 0.3                | 1.0              | 3.0  |      |
|                                  | Collector-Emitter saturation voltage | VCE(sat)         | I <sub>F</sub> =±10mA, Ic=2mA              | -                  | ı                | 0.3  | V    |
|                                  | Isolation resistance                 | Riso             | DC500V                                     | 5x10 <sup>10</sup> | 10 <sup>11</sup> | _    | Ω    |
|                                  | Floating capacitance                 | Cf               | V=0, f=1MHz                                | -                  | 0.4              | -    | pF   |
|                                  | Response time (Rise) (*3)            | tr               | Vce=5V,Ic=2mA,R <sub>I</sub> =100 $\Omega$ | -                  | 3                | 18   | μs   |
|                                  | Response time (Fall) (*3)            | tf               | 100 17 100 17 100 17 100 17 100 17         | -                  | 5                | 18   | μs   |

<sup>\*3</sup> Test Circuit for Switching Time

<sup>\*2</sup> AC voltage for 1minute at T =25°C,RH=60% between input and output.

4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER


# Fig.1 Current Transfer Ratio vs. Forward Current

Classification table of current transfer ratio is shown below.

| CTR Rank. | CTR (%)    |
|-----------|------------|
| KPS28050E | 50 TO 600  |
| KPS28050C | 200 TO 400 |

V<sub>CE</sub>=5V 450 **Current Transfer Ratio** 400 350 300 250 200 150 100 5 10 0 0.5 20 50 Forward Current I<sub>F</sub> (mA)

Fig.2 Collector Power Dissipation vs. Ambient Temperature



Ambient Temperature Ta (°C)

Fig.3 Collector Dark Current vs. Ambient Temperature

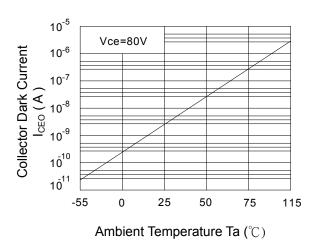



Fig.4 Forward Current vs. Ambient Temperature

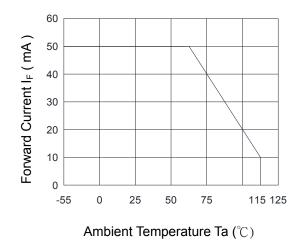
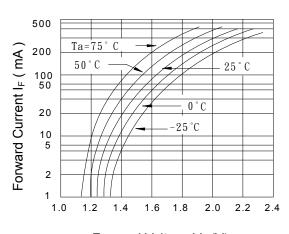




Fig.5 Forward Current vs. Forward Voltage



Forward Voltage V<sub>F</sub> (V)

Cosmo Electronics Corp.
Document No. 69P15001.7

http://www.cosmo-ic.com

**4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER** 

**Fig.6 Collector Current** vs. Collector-Emitter Voltage

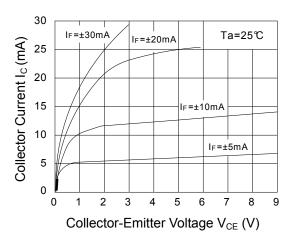



Fig.8 Collector-Emitter Saturation Voltage vs. Ambient Temperature

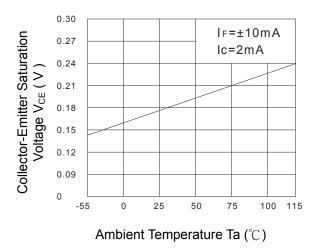



Fig.10 Response Time (Rise) vs. Load Resistance

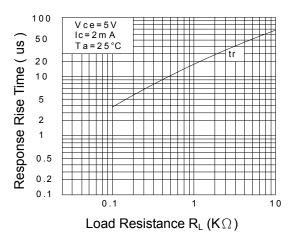
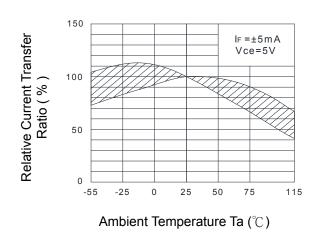



Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature



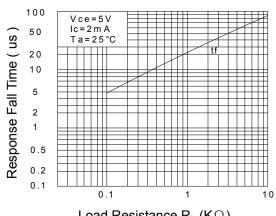
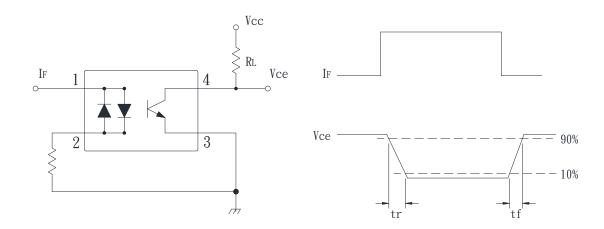



Fig.9 Collector-Emitter Saturation Voltage vs. Forward Current



Forward Current I<sub>F</sub> (mA)


Fig.11 Response Time (Fall) vs. Load Resistance



Load Resistance  $R_L(K\Omega)$ 

4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

# • Test Circuit for Response Time





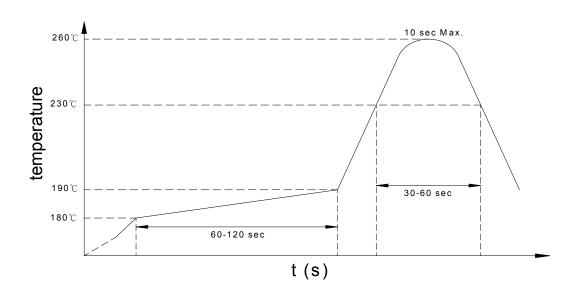
# 4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

#### Recommended Soldering Conditions

(a) Infrared reflow soldering:

■ Peak reflow soldering : 260°C or below (package surface temperature)

■ Time of peak reflow temperature : 10 sec
 ■ Time of temperature higher than 230°C : 30-60 sec
 ■ Time to preheat temperature from 180~190°C : 60-120 sec


■ Time(s) of reflow: Two

■ Flux : Rosin flux containing small amount of chlorine (The

flux with a maximum chlorine content of 0.2 Wt% is

recommended.)

#### Recommended Temperature Profile of Infrared Reflow



#### (b) Wave soldering:

■ Temperature : 260°C or below (molten solder temperature)

■ Time : 10 seconds or less

■ Preheating conditions : 120°C or below (package surface temperature)

■ Time(s) of reflow : One

■ Flux: Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

(c) Cautions:

■ Fluxes: Avoid removing the residual flux with freon-based and chlorine-based

cleaning solvent.

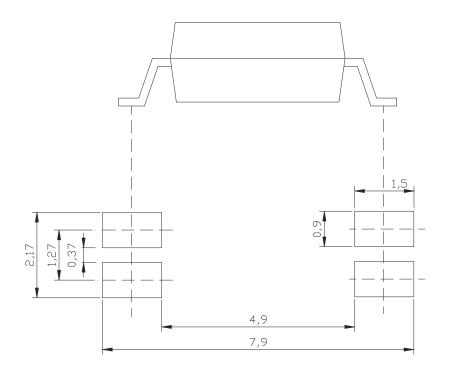
Avoid shorting between portion of frame and leads.

4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

## Numbering System

# **KPS2805** <u>Y</u> (Z)

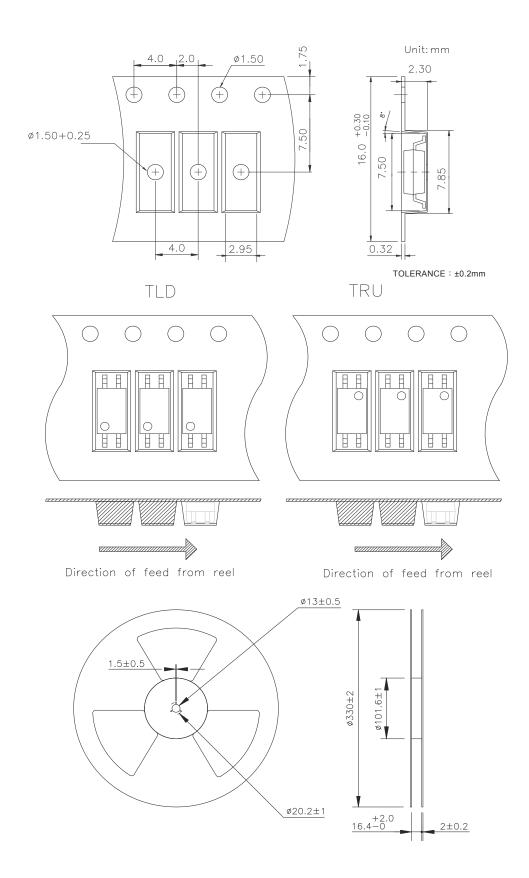
#### Notes:


KPS2805 = Part No.

 $Y = CTR \text{ rank option } (C \cdot E)$ 

Z = Tape and reel option (TLD \ TRU)

| Option | Description            | Packing quantity    |  |  |
|--------|------------------------|---------------------|--|--|
| TLD    | TLD tape & reel option | 3000 units per reel |  |  |
| TRU    | TRU tape & reel option | 3000 units per reel |  |  |


## • Recommended Pad Layout for Surface Mount Lead Form



Unit: mm



## • 4-pin SSOP Carrier Tape & Reel



# cosmo

# KPS2805 Series 4PIN SSOP PHOTOTRANSISTOR

# 4PIN SSOP PHOTOTRANSISTOR PHOTOCOUPLER

#### Application Notice

The statements regarding the suitability of products for certain types of applications are based on cosmo's knowledge of general applications of cosmo products. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to verify the specifications are suitable for use in a particular application. Customers are solely responsible for all aspects of their own product design or applications. The parameters provided in the datasheet may vary in different applications and performance may vary over time. All operating parameters (including typical parameters) must be validated by customer's technical experts for different applications. cosmo assumes no liability for customer' product design or applications. Product specifications do not expand or otherwise change cosmo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

When using cosmo products, please comply with safety standards and instructions. cosmo has no liability and responsibility to the damage caused by improper use of the instructions specified in the specifications.

cosmo products are designed for use in general electronic equipment such as telecommunications, office automation equipments, personal computers, test and measurement equipments, consumer electronics, industrial control, instrumentation, audio, video.

cosmo devices shall not be used in equipment that requires higher level of reliability and safety, such as nuclear power control equipment, telecommunication equipment(trunk lines), space application, medical and other life supporting equipments, and equipment for aircraft, military, automotive or any other application that can cause human injury or death.

cosmo reserves the right to change the specifications, data, characteristics, structure, materials and other contents at any time without notice. Please contact cosmo to obtain the latest specification.

cosmo disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.