
LSOP 6 High Speed 10MBit/s PHOTOCOUPLER

Description

The KT060L is an optically coupled gate that combines a light emitting diode and an integrated high gain photo detector. The output of the detector IC is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 10,000 V/µs for the KT060L.

This unique design provides maximum AC and DC circuit isolation while achieving TTL compatibility. The KT060L is suitable for high-speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Schematic

- 1. Anode
- 4. GND
- 2. N.C.
- 5. Vo (Voltage Output)
- 3. Cathode
- 6. Vcc

Features

- 1. 10 kV/μs minimum Common Mode Rejection (CMR) at VCM = 1000V
- 2. High speed: 10 MBd typical
- 3. Guaranteed ac and dc performance over -40°C ~+110°C

Applications

- •Isolated line receiver
- •Computer-peripheral interfaces
- Digital isolation for A/D, D/A conversion
- •Isolation of high speed logic systems
- Approved

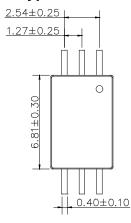
UL1577, File No.E169586

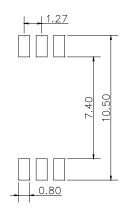
DIN EN IEC 60747-5-5 (VDE 0884-5):2021-10; EN IEC 60747- 5-5:2020, Certificate No.40055228

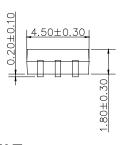
CQC GB4943.1-2022

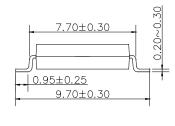
Truth Table

LED	OUT
ON	L
OFF	Н

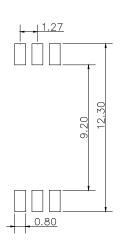

Note: A $0.1\mu F$ bypass capacitor must be connected between Pin 4 and 6.

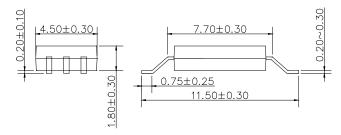

LSOP 6 High Speed 10MBit/s PHOTOCOUPLER


Outside Dimension


Unit: mm

P Type





W Type

Device Marking

Notes:

cosmo 060L YWW

Y: Year code / WW: Week code V or None : VDE option

Absolute Maximum Ratings

<u>▼ Al</u>	Absolute Maximum Ratings (1a = 25°C)							
	Parameter		Symbol	Rating	Unit			
	Forward current		I _F	20	mA			
Input	Peak transient forward current	(Note 1)	I _{FPT}	1	А			
	Reverse voltage		V_R	5	V			
	Output current		Io	50	mA			
Output	Output voltage		Vo	7	V			
	Supply Voltage	Vcc	7	V				
Junction	n temperature		T _j	125	°C			
Storage	Temperature		Tstg	-55~125	°C			
Operati	ng Temperature		Topr	-40~110	°C			
Total Pa	ackage Power Dissipation		PT	130	mW			
Lead soldering temperature(10s) (Note		(Note 2)	T _{sol}	260	°C			
Isolation	Isolation voltage (AC,1min.,R.H≤60%) (Note 3)		BVs	5000	Vrms			
Input-O	utput Resistance (V _{I-O} = 500V DC)	(Note 3)	R _{I-O}	10 ¹²	Ω			

Note 1: Pulse width Pw $\leq 1 \mu$ s,300pps.

Note 2: It is 2 mm or more from a lead root.

Note 3: Device is considered as a two terminal device: Pin1,2 and 3 shorted together, and pins 4,5 and 6 shorted together.

Recommend Operation Conditions

Parameter	Symbol	Min.	Max.	Unit	
Operating Temperature	TA	-40	110	°C	
Supply Voltage	VCC	2.7	3.6	V	
Supply Voltage	VCC	4.5	5.5	V	
Input Current High Level	IFLH	5	15	mA	
Input Voltage Low Level	VFHL	-3.0	0.8	V	
Fan Out (at RL = 1 KΩ)	N	-	5	TTL Loads	
Output Pull-up Resistor	RL	330	4K	Ω	

Note 1: Detector requires a VCC of 4.5 V or higher for stable operation as output might be unstable if VCC is lower than 4.5 V. Be sure to check the power ON/OFF operation other than the supply current.

Electrical Characteristics

Over recommended operating conditions unless otherwise specified.

Paramet	er	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Forward	Voltage	VF	IF=10mA	1.6	2.0	2.4	V
Input Reverse	Voltage	BVr	IR = 10μA	5	-	-	V
Input Threshold	d Current	Current I_{TH} $VCC = 3.3V, VO = 0.6V, IOL > 13 mA - 1.0$		5.0	mA		
Input Capac	itance	Cin	f = 1 MHz, V _F = 0 V	f = 1 MHz, VF = 0 V - 60 -		pF	
High Level		Іссн	VCC = 3.3V, IF = 0 mA	-	4.8	7	A
Supply Current	Low Level	ICCL	VCC = 3.3V, IF = 10 mA	-	4.4	10	mA
Output current	High level	Іон	VCC = 3.3V, VO = 3.3V, VF = 0.8V		0.2	100	uA
Output voltage	Low level	Vol	VCC = 5.5V, IF = 5 mA, IOL(Sinking) = 13 mA	-	0.28	0.6	V

Note 2: The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guard band.

Over recommended operating conditions unless otherwise specified.

 $(Ta = 25^{\circ}C.)$

Paramet	Parameter		Test Condition	Min.	Тур.	Max.	Unit
Input Forward	Voltage	VF	I=10mA	1.6	2.0	2.4	V
Input Reverse	Voltage	BVR	IR = 10μA	5	-	-	V
Input Threshold Current		Ітн	VCC = 5.5V, VO = 0.6V, IOL > 13 mA	-	1.0	5.0	mA
Input Capac	Input Capacitance		f = 1 MHz, V _F = 0 V	-	60	1	pF
Supply Current	High Level	Іссн	VCC = 5.5V, IF = 0 mA	-	5.6	7.5	mA
Supply Current	Low Level	Iccl	VCC = 5.5V, IF = 10 mA	-	5.2	10.5	IIIA
Output current High level Іон VCC =		VCC = 5.5V, VO = 5.5V, VF = 0.8V	-	0.35	100	uA	
Output voltage			VCC = 5.5V, IF = 5 mA, IOL(Sinking) = 13 mA	-	0.25	0.6	V

Note 1: Duration of output short circuit time should not exceed 10 μs .

Note 2: Input capacitance is measured between pin 1 and pin 3.

Switching Characteristics

Over recommended operating conditions TA = -40°C to 100°C, VCC = 3.3V, IF = 7.5 mA unless otherwise specified.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time to Output Low Level	t _{PHL}		-	35	75	
Propagation Delay Time to Output High Level	t _{PLH}	VCC = 3.3V, IF = 7.5 mA,	-	60	90	
Pulse Width Distortion	PWD	RL = 350Ω, CL = 15 pF	-	25	40	ns
Propagation Delay Skew	tPSK		-	-	50	
Rise Time	t _r		-	30	-	
Fall Time	t _f		-	3	-	
Common mode transient immunity at high level output	C _{MH}	VCC = 3.3V, IF = 0 mA, $VO(MIN) = 2V$, RL = 350Ω, $VCM = 1000V$	10	15	-	KV / µs
Common mode transient immunity at low level output	C _{ML}	VCC = 3.3V, IF = 7.5 mA, VO(MAX) = 0.8V,RL = 350Ω, VCM = 1000V	10	15	-	KV / μs

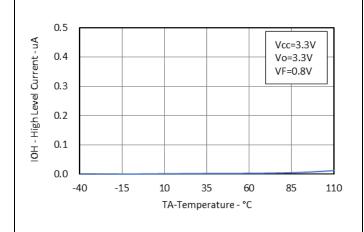
LSOP 6 High Speed 10MBit/s PHOTOCOUPLER

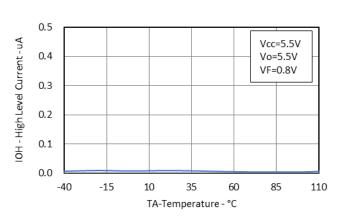
Over recommended operating conditions TA = -40°C to 100°C, VCC = 5V, IF = 7.5 mA unless otherwise specified.

-					(- 20 0)
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time to Output Low Level	t _{PHL}		-	35	75	
Propagation Delay Time to Output High Level	t _{PLH}	VCC = 5V, IF = 7.5 mA,	-	55	75	
Pulse Width Distortion	PWD	RL = 350Ω, CL = 15 pF	-	20	40	ns
Propagation Delay Skew	tPSK		-	-	50	
Rise Time	t _r		-	30	-	
Fall Time	t _f		-	3	-	
Common mode transient immunity at high level output	C _{MH}	VCC = 5V, IF = 0 mA, VO(MIN) = $2V$,RL = $350Ω$, VCM = $1000V$	10	15	-	KV / µs
Common mode transient immunity at low level output	C _{ML}	VCC = 5V, IF = 7.5 mA, VO(MAX) = 0.8V,RL = 350Ω, VCM = 1000V	10	15	-	KV / μs

Note 1: The tPLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tPHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.

Note 2: Pulse Width Distortion (PWD) is defined as | tPHL - tPLH | for any given device.


Note 3: The difference of tPLH and tPHL between any two devices under the same test condition.


Note 4: CMH is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, VO > 2.0 V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, VO < 0.8 V. Note: Equal value split resistors (Rin/2) must be used at both ends of the LED.

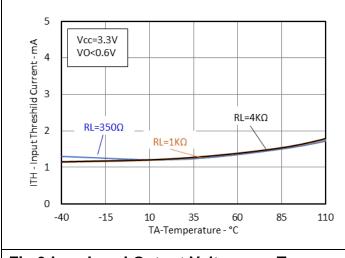

TYPICAL PERFORMANCE CURVES & TEST CIRCUITS

Fig.1 High Level Output Current vs. Temp

Fig.2 Input Threshold Current vs. Temp

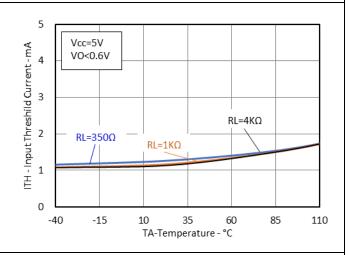
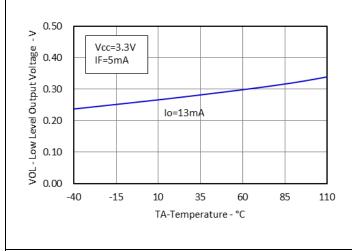



Fig.3 Low Level Output Voltage vs. Temp

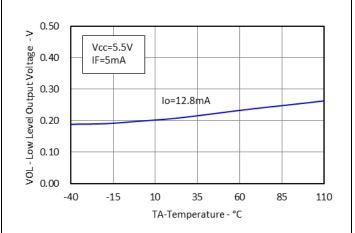
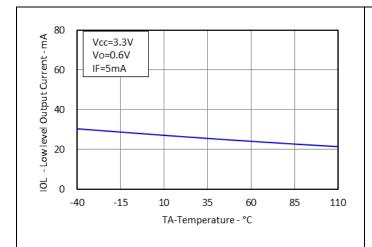



Fig.4 Low Level Output Current vs. Temp

LSOP 6 High Speed 10MBit/s PHOTOCOUPLER

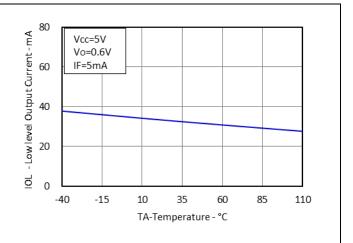
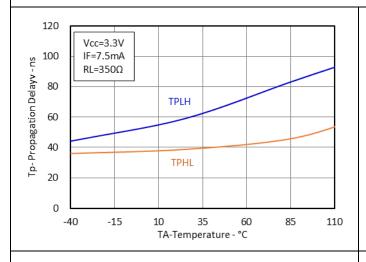
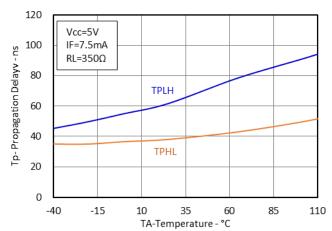
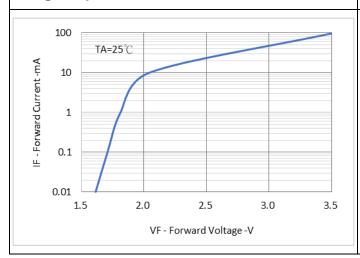
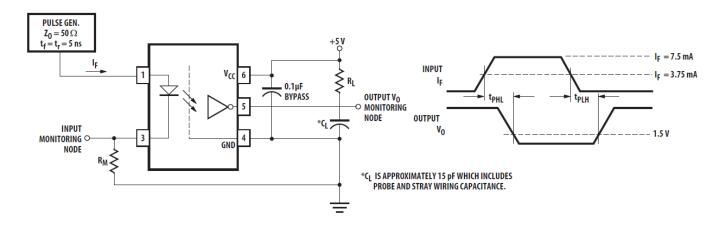
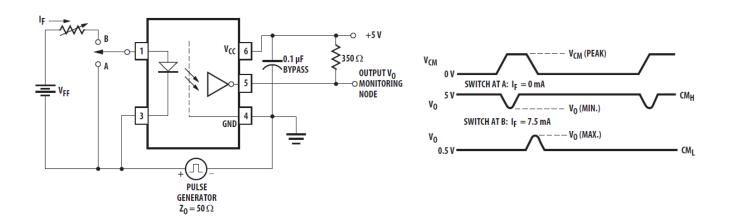





Fig.5 Propagation Delay vs. Temperature


Fig.6 Input Diode Forward Characteristic

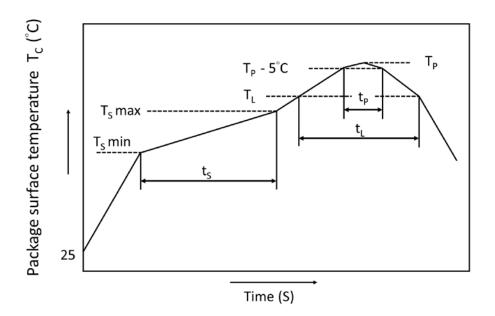


Test Circuit

Propagation delay time tPLH \ tPHL \ and rise time tr, fall time tf

Common Mode Transient Immunity Test Circuit and Typical Waveforms

 $^*C_{ML}(C_{MH})$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.



Recommended Soldering Conditions

IR Reflow soldering

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Recommended Temperature Profile of Infrared Reflow

	Symbol	Min	Max	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	t _S	60	120	S
Ramp-up rate (T _L to T _P)			3	°C/s
Liquidus temperature	TL	217		°C
Time above T _L	t∟	60	100	S
Peak Temperature	T _P		260	°C
Time during which T _C is	4		20	
between (T_P - 5) and T_P	t _P		20	S
Ramp-down rate			6	°C/s

Numbering System

KT060L X (Y)-(Z)

Notes:

KT060 = Part No.

X = Lead form option (P or W)

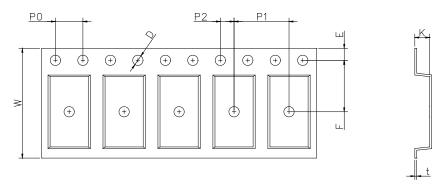
Y = Tape and reel option (TLD or TRU)

Z = VDE option (V or None)

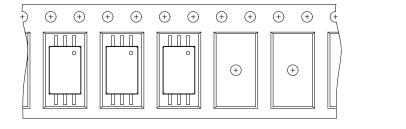
Option	Description	Packing quantity
P (TLD)	surface mount type package + TL tape & reel option	3000 units per reel
P (TRU)	surface mount type package + TR tape & reel option	3000 units per reel
W (TLD)	long creepage distance for surface mount type package + TLD tape & reel option	3000 units per reel
W (TRU)	long creepage distance for surface mount type package + TRU tape & reel option	3000 units per reel

Recommended Pad Layout for Surface Mount Lead Form

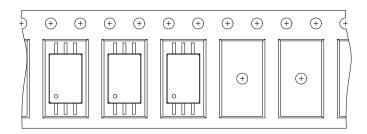
1. Surface mount type


2.Long creepage distance for surface mount type

Unit:mm http://www.cosmo-ic.com



• LSOP 6 Carrier Tape & Reel


Dimension Symbol	D	E	F	P0	P1	P2	t	W	К
P type Dimension (mm)	1.5±0.1	1.75±0.1	7.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	16.0±0.3	2.15±0.1
W type Dimension (mm)	1.5±0.1	1.75±0.1	11.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	0.3±0.1	24.0±0.3	2.52±0.1

TRU

TLD

LSOP 6 High Speed 10MBit/s PHOTOCOUPLER

Application Notice

The statements regarding the suitability of products for certain types of applications are based on cosmo's knowledge of general applications of cosmo products. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to verify the specifications are suitable for use in a particular application. Customers are solely responsible for all aspects of their own product design or applications. The parameters provided in the datasheet may vary in different applications and performance may vary over time. All operating parameters (including typical parameters) must be validated by customer's technical experts for different applications. cosmo assumes no liability for customer' product design or applications. Product specifications do not expand or otherwise change cosmo's terms and conditions of purchase, including but not limited to the warranty expressed therein.

When using cosmo products, please comply with safety standards and instructions. cosmo has no liability and responsibility to the damage caused by improper use of the instructions specified in the specifications.

cosmo products are designed for use in general electronic equipment such as telecommunications, office automation equipments, personal computers, test and measurement equipments, consumer electronics, industrial control, instrumentation, audio, video.

cosmo devices shall not be used in equipment that requires higher level of reliability and safety, such as nuclear power control equipment, telecommunication equipment(trunk lines), space application, medical and other life supporting equipments, and equipment for aircraft, military, automotive or any other application that can cause human injury or death.

cosmo reserves the right to change the specifications, data, characteristics, structure, materials and other contents at any time without notice. Please contact cosmo to obtain the latest specification.

cosmo disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.